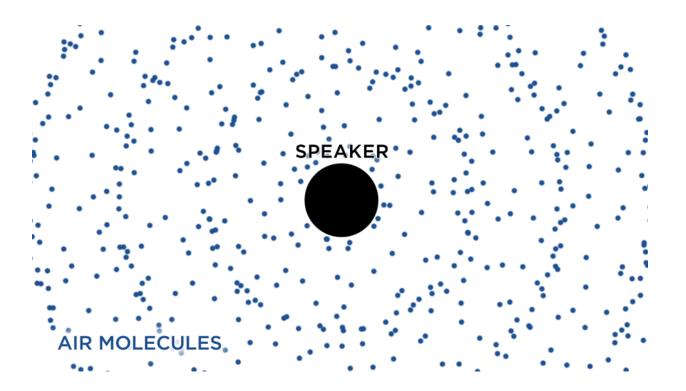
Physics 1240: Sound and Music

Today (7/10/19): Hooke's Law, Oscillations, Resonance

<u>Next time</u>: Doppler Effect, Interference, Beats


<u>Review</u>

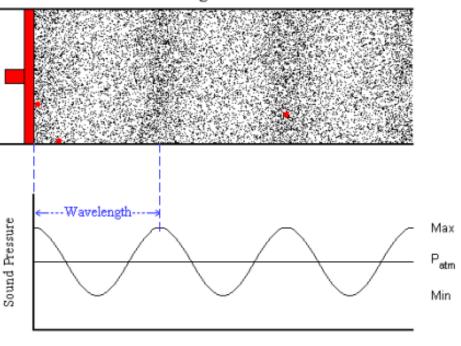
<u>Base units:</u> meters [m] (3.3 ft), kilograms [kg] (2.2 lb), seconds (s)

Prefixes: 1×10^{-3} milli (m) 0.001 centi (c) 0.01 1×10⁻² deci (d) 1×10⁻¹ 0.1 1×10^{3} kilo (k) 1000 1,000,000 1×10^{6} mega (M)

<u>Review</u>

Sound is a mechanical disturbance of the **pressure** in a **medium** that travels in the form of a **longitudinal wave**.

Review


Wave properties:

- <u>Speed</u> (v=343 m/s for air at 20°C and 1 atm)
- <u>Wavelength</u> (λ in meters)
- Frequency (f in hertz)
 - 1 Hz = 1 s⁻¹

$$v = \lambda f$$

[m/s] = [m] [Hz]

Acoustic Longitudinal Wave

If there are 101325 pascals (Pa) in one atmosphere, how many megapascals (MPa) are there in one atmosphere?

A) 0.101325 MPa

- B) 1.01325 MPa
- C) 101.325 MPa
- D) 1.01325×10⁸ MPa
- E) 1.01325×10¹¹ MPa

If there are 101325 pascals (Pa) in one atmosphere, how many megapascals (MPa) are there in one atmosphere?

- A) 0.101325 MPa
- B) 1.01325 MPa
- C) 101.325 MPa
- D) 1.01325×10⁸ MPa
- E) 1.01325×10¹¹ MPa

What type of waves are created when a guitar string is plucked?

- A) Longitudinal in the string, transverse in the air
- B) Longitudinal in the string and in the air
- C) Transverse in the string, longitudinal in the air
- D) Transverse in the string and in the air
- E) Transverse in the string only

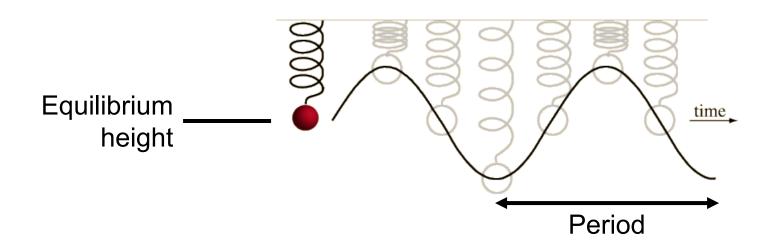
What type of waves are created when a guitar string is plucked?

- A) Longitudinal in the string, transverse in the air
- B) Longitudinal in the string and in the air
- C) <u>Transverse in the string, longitudinal in the air</u>
- D) Transverse in the string and in the air
- E) Transverse in the string only

How fast does the air flow out of your mouth as you sing or speak?

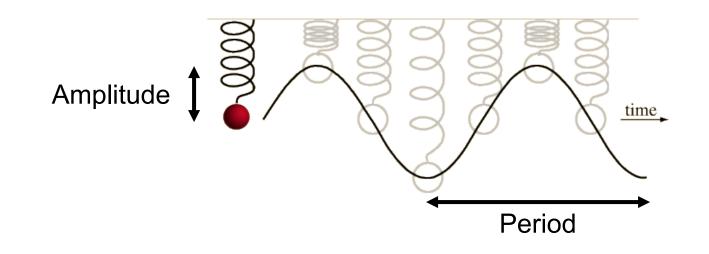
A) 343 m/s
B) Much faster than 343 m/s
C) Much slower than 343 m/s
D) The air isn't actually "flowing" out

How fast does the air flow out of your mouth as you sing or speak?

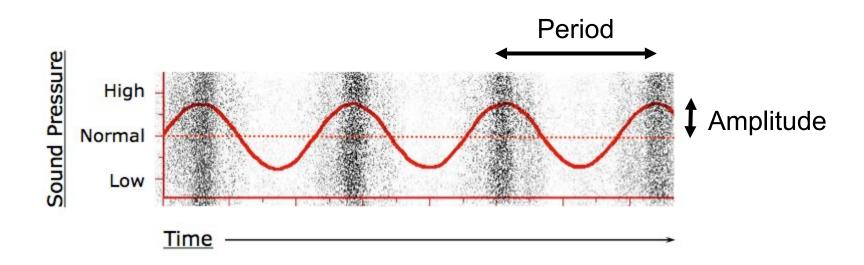

A) 343 m/s
B) Much faster than 343 m/s
C) <u>Much slower than 343 m/s</u>
D) The air isn't actually "flowing" out

343 m/s = 770 mph Category 5 hurricane = 70 m/s = 156 mph

Simple Harmonic Motion


- Mass displaced from equilibrium point oscillates about that point with periodic motion
- <u>Period</u> (T in seconds): time it takes to return to the same point of periodic motion

$$f = \frac{1}{T} \qquad [Hz] = \frac{1}{[s]}$$


Simple Harmonic Motion

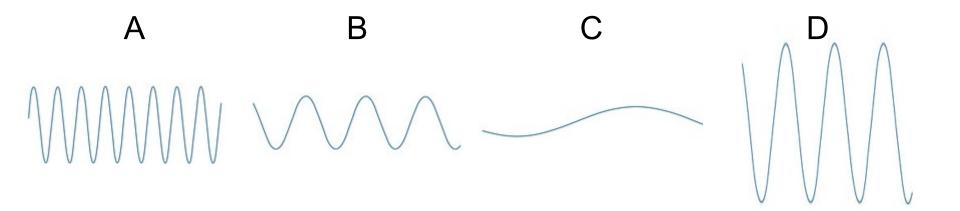
- <u>Amplitude</u> (*A* in meters): maximum displacement from equilibrium
- How are the amplitude and period related?

Relating back to sound:

- Amplitude ↔ loudness
- Frequency ↔ pitch

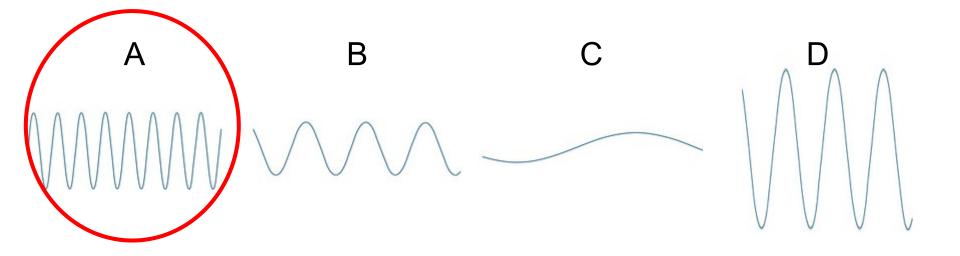
What is the period (in milliseconds) of a sound wave produced from a piano playing a middle C ($f \approx 262$ Hz)?

A) 262 ms B) 3.8 ms C) 3.8×10⁻³ ms D) 1.3 ms E) 2.62 ms

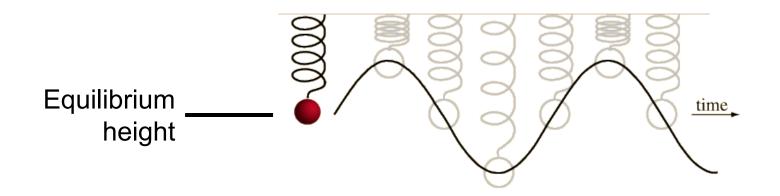

What is the period (in milliseconds) of a sound wave produced from a piano playing a middle C ($f \approx 262$ Hz)?

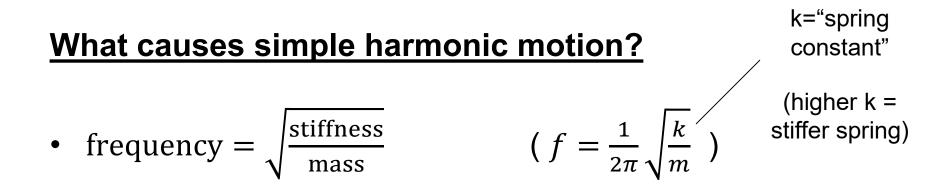
A) 262 ms B) <u>3.8 ms</u> C) 3.8×10⁻³ ms D) 1.3 ms E) 2.62 ms

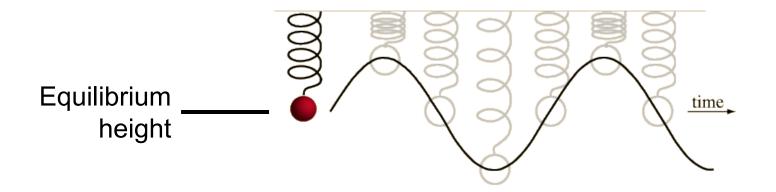
$$T = \frac{1}{f} = \frac{1}{262 \text{ Hz}} = 0.0038 \text{ s}$$



Which sound wave (plotted as air pressure vs. time) has the highest pitch?




Which sound wave (plotted as air pressure vs. time) has the highest pitch?


What causes simple harmonic motion?

- <u>Elasticity</u> (stiffness): causes system to return to equilibrium
 - Hooke's law: the farther you extend the system, the larger the restoring force (related linearly)
- <u>Inertia</u> (mass moving): causes system to overshoot equilibrium

 Intuitive: trampoline, tight vs. loose string, tuba vs. flute

What causes simple harmonic motion?

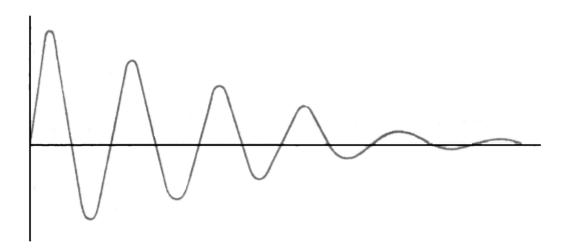
• frequency =
$$\sqrt{\frac{\text{stiffness}}{\text{mass}}}$$

$$(f = \frac{1}{2\pi} \sqrt{\frac{k}{m}})$$

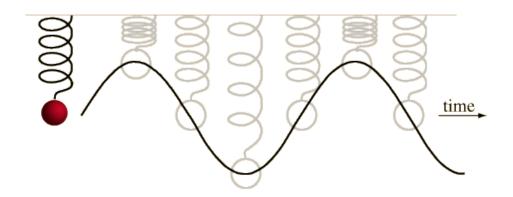
• Example: guitar

Two timpani (labelled A and B) produce sound by a mallet hitting a vibrating circular membrane. If A has a larger membrane than B, but A's membrane is fitted more loosely, which will have a higher pitch?

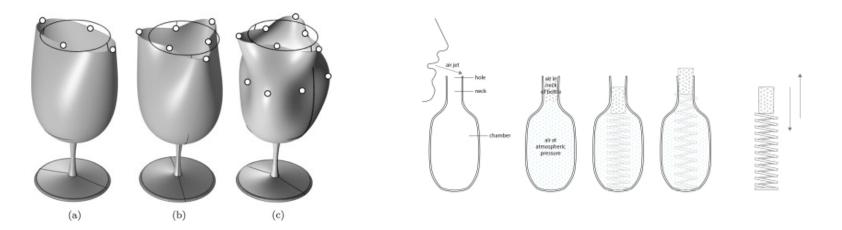
- A) A
- B) B
- C) Same pitch
- D) Can't tell without more info


Two timpani (labelled A and B) produce sound by a mallet hitting a vibrating circular membrane. If A has a larger membrane than B, but A's membrane is fitted more loosely, which will have a higher pitch?

- A) A
 B) <u>B</u>
 C) Same pitch
 D) Can't tell without r
- D) Can't tell without more info


Deviations from simple harmonic motion

- Decreasing amplitude: <u>damping</u>
- Increasing amplitude: resonance
- Damping:
 - What causes sound to decay?
 - What happens to the frequency?


Resonance

- Most objects have a <u>natural</u> (or <u>resonant</u>) frequency at which they tend to vibrate (depends on shape, material, inertia, etc.)
- <u>Resonance</u>: applying energy periodically to a system to amplify its natural frequency
 - e.g. child on swing, <u>bridges</u>, blowing on bottle

Demos: resonance boxes, wine glasses, bottles

Glass harmonica: https://youtu.be/OztMMj4OF0w?t=37 https://youtu.be/QMe8e5GcY0c?t=137

Bottles: "Helmholtz resonance" (also applies to whistles, ocarinas, guitar bodies, seashells, and a slightly open window in a car)